

Data Structures

AVL Trees

Teacher : Wang Wei

- 1. Ellis Horowitz,etc., Fundamentals of Data Structures in C++

- 4. http://inside.mines.edu/~dmehta/

Dynamic Dictionaries

- Primary Operations
 - Get(key)
- => search
- Insert(key, element) => insert
- Delete(key)
- => delete
- · Additional operations
 - Ascend()
 - Get(index)
 - Delete(index)

Balanced Trees

- BST
 - has a high risk of becoming unbalanced
- AVL Tree

 - Should be viewed as a BST with the following additional property
 For every node, the heights of its left and right subtrees differ by at most 1

AVL Tree

- named for its inventors Adelson-Velskii and Landis
- - An empty binary tree is height-balanced
 - If \boldsymbol{T} is a nonempty binary tree with \boldsymbol{T}_L and \boldsymbol{T}_R

 - T_L: left subtrees
 T_R: right subtrees
 - Then T is height-balanced iff
 - (1) T_L and T_R are height-balanced (2) $|h_L - h_R| \le 1$ - h_L : the height of T_L

 - $h_{\rm R}$: the height of ${\rm T}_{\rm R}$

bf (balance factor)

for every node \mathbf{x} , define its balance factor

 $- bf(x) = h_L - h_R$

balance factor of x =height of left subtree of x

- height of right subtree of x

- balance factor of every node x, bf(x), is -1, 0, or 1
- The new tree is not an AVL tree only if you reach a node whose balance factor is either 2 or -2
- this case is said the tree has become unbalanced

Height Of An AVL Tree

- The height of an AVL tree that has n nodes - is at most 1.44 log₂ (n+2)
- The height of every binary tree that has *n* nodes - is at least log₂ (n+1)

 $\log_2 (n+1) \le \text{height} \le 1.44 \log_2 (n+2)$

- The height or the depth of an AVL tree is at most $O(\log_2 n)$
- Search for any node cost $O(\log_2 n)$
- Inserts or deletes cost $O(\log_2 n)$, even in the worst case

Unbalanced AVL tree

- The new tree is not an AVL tree only if you reach a node whose balance factor is either 2 or -2
- this case is said the tree has become unbalanced

Rotations Types

For a new node Y, let A be the nearest ancestor of Y Single Rotations

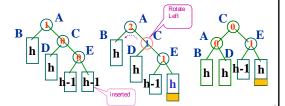
- LL:
 - Y is inserted in the left subtree of the left subtree of A
- RR:
 - Y is inserted in the right subtree of the right subtree of A

Double Rotations

- LR : is RR followed by LL
 - Y is inserted in the right subtree of the left subtree of A
- RL: is LL followed by RR
 - Y is inserted in the left subtree of the right subtree of A

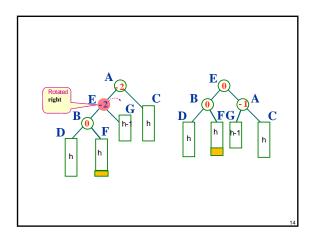
RR

- . Be inserted in the right subtree of the right subtree of ${\bf A}$
- · RR : adjustments to be rebalanced



 $\label{eq:continuous} $$\operatorname{template} < \operatorname{class} E > \operatorname{void} AVLTree < E > :: RotateL\ (AVLNode < E > * \&\ ptr) $$$

LR Be inserted in the right subtree of the left subtree of A RL: adjustments to be rebalanced RD Rotated Left



RL

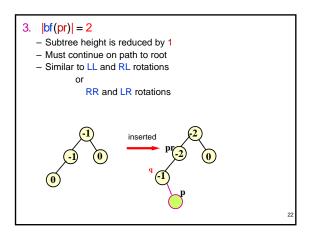
Insertion

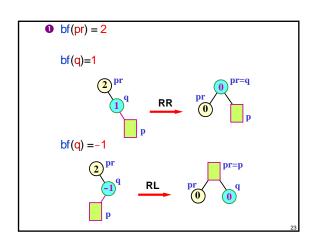
- · When a new node p is inserted
 - AVL tree has become unbalanced
 - \mid bf \mid > 1 , for any node of the tree
- Method:
 - (1) following insert
 - (2) retrace path towards root
 - (3) adjust balance factors as needed
 - (4) stop when reach a node whose balance factor becomes 0, 2, or -2, or the root

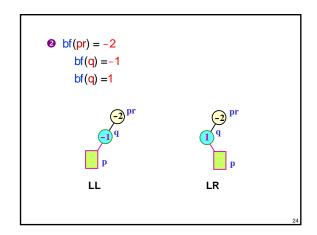
Let: bf(p)=0, pr is parent of p

- bf(pr) have three case :
- 1. bf(pr)=0 ,after inserted
 - Subtree height is unchanged
 - No further adjustments to be done

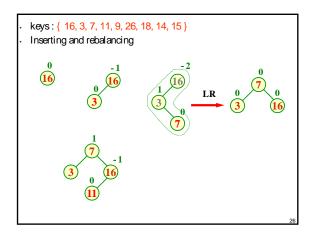
- 2. |bf(pr)| = 1
 - bf(pr)=0 , before inserted
 No further adjustments to be done
 - Subtree height is changed, +1/-1
 - Must continue on path to root
 - pr = Parent(pr)

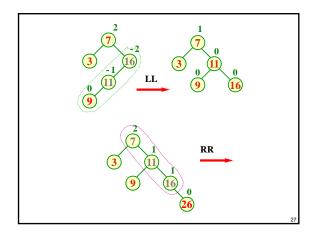


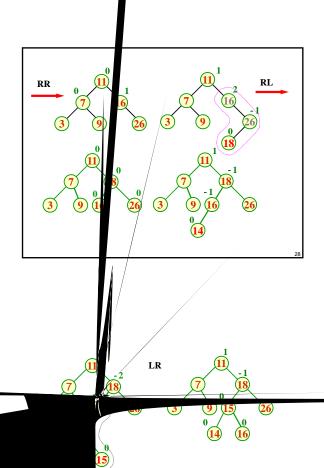




Constructing an AVL tree







New Balance Factor Of q Deletion from left subtree of q => bf--Deletion from right subtree of q => bf++ New balance factor = 1 or -1=> no change in height of subtree rooted at q New balance factor = 0 => height of subtree rooted at q has decreased by 1 New balance factor = 2 or -2 => tree is unbalanced at q **Imbalance Classification** • Let A be the nearest ancestor of the deleted node - whose balance factor has become 2 or -2 following a deletion • Deletion from left subtree of A => type L Deletion from right subtree of A => type R • Type R => new bf(A) = 2 • So, old **bf**(A) = 1 • So, A has a left child B - bf(B) = 0 => Rotation - bf(B) = 1 => Rotation - bf(B) = -1 => Rotation Deletion 1. x is leaf node - Remove X 2. x has a child Replace X by the child - Remove the child 3. x has two children Replace X by Y Y is the *inorder* predecessor or the the inorder successor of X Remove Y

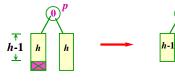
A Boolean Variable

- . 1 bool shorter = true
 - Notes : subtree height is unchanged or reduced
- 2 For every node, new balance factor depends on
 - shorter
 - **bf**(X)
 - bf(child(X))
- . 3 Must continue on path every p from parent(X) to root
 - if shorter=false stop
 - else

. .

1) Old $\mathbf{bf}(p)=\mathbf{0}$ and left/right subtree height of p is reduced then

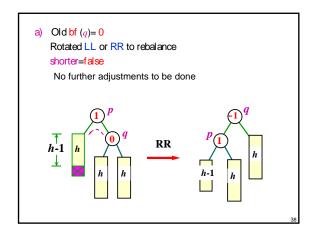
New bf (p)=1/-1 shorter=false

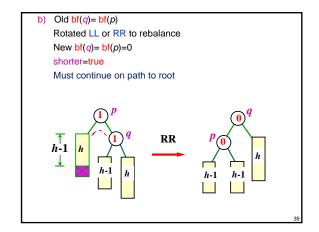


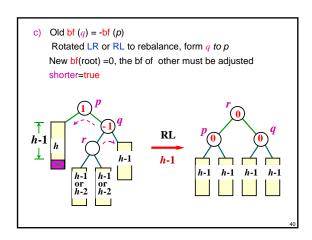
2) Old $\frac{bf}{p} = 0$ and the heighter subtree of $\frac{p}{p}$ is reduced then

New bf (p)= 0 shorter=true

3) Old $bf(p) = <>0$ and the shorter subtree of p is reduced
then
New bf $(p)= 2/-2 => imbalance$
shorter=true
How to rebalance
Rotation : the subtree is reduced
Let $q =$ the heighter subtree root
Then







Rotation Frequency

· Insert random numbers

No rotation ... 53.4% (approx)
 LL/RR ... 23.3% (approx)
 LR/RL ... 23.2% (approx)

Class Definition

Compares the Worst-Case Times				
Operation	Sequential list	Linked list	AVL tree	
Search for k	O(log n)	O(n)	O(log n)	
Search for jth item	O(1)	O(j)	O(log n)	
Delete k	O(n)	O(1) ¹	O(log n)	
Delete jth item	O(n-j)	O(j)	O(log n)	
Insert	O(n)	O(1) ²	O(log n)	
Output in order	O(n)	O(n)	O(n)	

- 1. Doubly linked list and position of k known
- 2. Position for insertion known

43

// AVL

```
protected:
int Height (AVLNode<E> * ptr) const;

bool Insert (AVLNode<E> * & ptr, E & e1);
bool Remove (AVLNode<E> * & ptr, E x, E & e1);
void Rotatel. (AVLNode<E> * & ptr); //
void RotateR (AVLNode<E> * & ptr); //
void RotateLR (AVLNode<E> * & ptr); //
void RotateLR (AVLNode<E> * & ptr); //
void RotateRL (AVLNode<E> * & ptr); //
};
```

Advanced Tree Structures

- self-adjusting data structure
 - Dynamic collections of elements
- Such as
 - Union-Find Sets
 - AVL Trees
 - Red-Black Trees
 - Splay Trees
 - Tries

Operation	Sequential list	Linked list	AVL tree
Search for k	O(log n)	O(n)	O(log n)
Search for jth item	O(1)	O(j)	O(log n)
Delete k	O(n)	O(1) ¹	O(log n)
Delete jth item	O(n-j)	O(j)	O(log n)
Insert	O(n)	O(1) ²	O(log n)
Output in order	O(n)	O(n)	O(n)

- 1. Doubly linked list and position of k known
- 2. Position for insertion known