
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3. http://inside.mines.edu/~dmehta/
4. ,

Why need algorithms
- To computer science
- The concept of an algorithm is fundamental
- In developing large-scale computer systems
- Algorithms
• exist for many common problems
• designing efficient algorithms plays a crucial
role

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Algorithm
Definition \qquad
is a step-by-step procedure
a finite set of instructions to be executed in a certain order to get the desired output
if followed, accomplishes a particular task

Algorithms are generally created independent of underlying languages
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Characteristics

- Input
- Zero or more quantities are externally supplied
- Output
- At least one quantity is produced
- Definiteness
- Each instructions is clear abs unambiguous
- Finiteness
- If we trace out the instructions of an algorithm, then for all cases, the algorithm terminates after a finite number of steps
- Effectivenes
- Every instruction must be basic enough to be carried out

Complexities

- Time Complexity of a program
- is the amount of computer time it needs to run to completion
- Running time or the execution time of operations of data structure must be as small as possible
- Space Complexity of a program
- is the amount of memory it needs to run to completion
- Memory usage of a data structure operation should be as little as possible
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Performance Measurement

for \qquad
Time Complexity
Posteriori testing
is concerned with obtaining the actual space
\qquad and time requirements of a program \qquad
\qquad
\qquad

```
Example : Sequential Search
    int seqsearch (int a[ ], int n, int x )
{
// a[0],\ldots,a[n-1] x
// -1
    inti=0;
    while(i < n && a[i] != x )
        i++;
    if(i== n) return 1;
    return i;
}
```

\qquad

Measuring the computing time of a program

function time() or clock()

Example:
double runTime;
double start, stop;
time(\&start);
int $\mathbf{k}=$ seqsearch ($\mathbf{a}, \mathbf{n}, \mathbf{x}$);
time(\&stop);
runTime $=$ stop start;
cout << " RunTime : " \ll runTime << endl;
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Performance analysis

for

 Time Complexity
Priori estimates

to predict the growth in run time as the instance characteristics change
asymptotic notation
Big "oh" : O

Asymptotic Notation

$f(n)=O(g(n))$
iff (if and only if) there exist positive constants c and
n_{0} such that $f(n) \leq c g(n)$ for all $n, n \geq n_{0}$

- $g(n)$
is an upper bound on the value
should be as small a function of n as one come up

Theorem 1.2

- if $f(n)=a_{m} n^{m}+\ldots+a_{1} n+a_{0}$, then $f(n)=O\left(n^{m}\right)$
- Proof:
$f(n) \leq \sum_{i=0}^{m}\left|\boldsymbol{a}_{i}\right| n^{i} \leq n^{m} \sum_{0}^{m}\left|\boldsymbol{a}_{i}\right| n^{i-m} \leq n^{m} \sum_{0}^{m}\left|a_{i}\right|, n \geq 1$
- So, $\mathbf{f}(\mathrm{n})=\mathbf{O}\left(\mathrm{n}^{\mathrm{m}}\right)$
- When the complexity of an algorithm is actually, say, $O(\log n)$,
- but we can only show that it is $\mathrm{O}(\mathrm{n})$ due to the limitation of our knowledge
- it is OK to say so
- This is one benefit of O notation as upper bound
$1 \mathrm{E}+60$
$1 \mathrm{E}+55$
$1 \mathrm{E}+50$
$1 \mathrm{E}+45$
$1 \mathrm{E}+40$
$1 \mathrm{E}+35$
$1 \mathrm{E}+30$
$1 \mathrm{E}+25$
$1 \mathrm{E}+20$
$1 \mathrm{E}+15$
$1 \mathrm{E}+10$
10000
1

Time complexity

- The time taken by a program P
$t(P)=c+t_{p}(n)$ \qquad
- c : constant
- t_{P} : function $f_{P}(n)$
- n : the number of the inputs and outputs
- $T(n)=O(f(n))$

Compile time

Run or execution time \qquad

- program step
- a syntactically or semantically meaningful segment of a program that has a run time

Run time is independent of \boldsymbol{n}

```
- Determine the number of steps: method 1
    - Introduce a global variable count with initial value 0
int count=0;
float sum (float a[ ], int n)
{loat s=0.0; //count++
    count++;
    for (int i=0; i < n; i++) //count++ : <init>;<expr1>
    { count ++;
        s += a[i]; //count++
        count++;
    }
    count ++ //count++: <expr1>;<expr2>
    count++;
    return s; //count++ : return
}
```

- Determine the number - build a table	steps	: steps per execution	
program	s/e	frequency	steps
\{	0	1	0
float $\mathrm{s}=0.0$;	1	1	1
for (int i=0; i<n; $\mathrm{i}^{+++ \text {) }}$	1	n+1	1n+1
s +=a[i];	1	n	n
return s;	1	1	1
\}	0	1	0
		al steps	$2 \mathrm{n}+3$

\qquad
\qquad
\qquad
\qquad
\qquad
${ }^{19}$ \qquad

	s/e : steps per execution		
program	s/e	Frequency $\mathrm{n}=0 / \mathrm{n}>0$	Steps $n=0 / n>0$
$\underline{1}$	0	1/1	0/0
if ($\mathrm{n}<=\mathbf{0}$)	1	1/1	1/1
return 0;	1	1/0	1/0
else			
return sum(a,n-1)+a[n-1]);	1+f(n-1)	0/1	0/1+f(n-1)
\}	0	1/1	0/0
	tota	steps	2/2+f(n-1)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

```
. T(n,m) = T ( }n\mathrm{ ) + T T (m)
        = O(max (f(n),g(m)))
    |x=0;y=0;
```

$T(n)=T_{1}(n)+T_{2}(n)+T_{3}(n)=O\left(\max \left(1, n, n^{2}\right)\right)=O\left(n^{2}\right)$

```
void bubbleSort (int a[ ], int n )
{// a[] ,n
    for(int i=1; i <= n-1; i++)
    { //n-1
        for(int j = n-1; j >= i; j--) //n-i
            if (a[j - 1] > a[j])
            { int tmp =a[j-1];
                a[j-1] = a[j];
                a[j] = tmp;
            } //
    }
}
```

$$
\begin{aligned}
& \cdot \mathrm{T}(n, m)= \mathrm{T}_{1}(n) * \mathrm{~T}_{2}(m) \\
&=\mathrm{O}\left(f(n)^{*} g(m)\right)
\end{aligned}
$$

BubbleSort

n-1
n-i \qquad
\qquad
$\mathrm{O}\left(f(n)^{*} g(n)\right)=\mathbf{O}\left(n^{2}\right)$
$\because{ }_{i 1}^{n 1}\left(\begin{array}{l}n \\ i)\end{array} \frac{n\binom{n}{2}}{2}\right.$
\qquad
\qquad

23 \qquad

Execution Time Cases

three cases

\qquad
Worst Case

- This is the scenario where a particular data structure operation takes maximum time it can take.
- If an operation's worst case time is $f(n)$ then this operation will not take more than $f(\mathrm{n})$ time where $f(\mathrm{n})$ represents function of n

Average Case

- This is the scenario depicting the average execution time of an operation of a data structure.
- If an operation takes $f(n)$ time in execution, then m operations will take $\mathrm{m} f(\mathrm{n})$ time

- Best Case

- This is the scenario depicting the least possible execution time of an operation of a data structure.
- If an operation takes $f(\mathrm{n})$ time in execution, then the actual operation may take time as the random number which would be maximum as $f(n)$

Space complexity

- The space requirement of program P $S(P)=c+S_{p}(n)$ \qquad
- c : constant
- S_{P} : function $f_{P}(n)$
- n : the number of the inputs and outputs
- $S(n)=O(f(n))$

Fixed part : is independent of the number of the inputs and outputs
Space for the code
Constant \qquad
Simple variables
Fixed-size component variables

Variable part : is dependent on the particular instance
component variables
Referenced variables
Recursion stack space

Example

//iterative function \qquad
float Sum (float *a, const int n)
\{ float $\mathrm{s}=\mathbf{0}$; \qquad for(int $\mathbf{i}=\mathbf{0} ; \mathbf{i}<\mathbf{n} ; \mathbf{i}++$) $\mathbf{s}+=\mathbf{a}[\mathbf{i}] ;$ \qquad return s;
\} \qquad
//recursive function
float Rsum (float *a, const int \mathbf{n})
\{ if ($\mathrm{n}<=\mathbf{0}$) return $\mathbf{0}$;
else return (Rsum(a,n-1)+a[n-1]);
\}

